
Big Data Infrastructures  
(Compute/Storage)

BIG DATA
UNT -2

feedback/corrections : vibha@pesu.pes.edu VIBHAMASTI



https://www.facebook.com/hadoopers/photos/408924142550465e

Oozie

• Recommendation system
• Workflow
• Pre - compute recommendation , update over weekend
• Too time-consuming

5. Store in prod .
database

1.Copy logs
4. Pre- compute

from prod . recommendations

system

Production
Logs DB

>

2-Dump database sanity
check✓

Recommen - Production

DB dation Dataset

3. Apply Big
Data Algorithms



Apache Oozie

° User submits workflow as XML

• Tomcat web application

002ie workflow

• workflow consists of action nodes and control flow nodes

• Action Nodes: represents workflow tasks leg: more files into HDFS
,

run MR
, Pig or HIVE job , import data using Sqoop , run shell

script of java program)

• Control - flow Nodes : controls workflow execution between actions

by allowing conditional logic
- start Node : designates the start of the workflow job
- End Node : signals end of job
- Error Node : designates occurrence of an error and corresponding
error message

• Other control nodes

- Fork and Join (start parallel tasks - could be MR and merge
parallel tasks)

- Decision C like C 's switch statements)



$ hadoop fs -put hadoop-examples/target/<name_of_workflow dir>/<name_of_workflow.xml>

$ export OOZIE_URL=”http://localhost:11000/oozie”

$ oozie job -config ch05/src/main/resources/max-temp-workflow-properties -run

nameNode=hdfs://localhost:8020
jobTracker=localhost:8021
oozie.wf.application.path=${nameNode}/user/${user.name}/<name_of_workflow>

• End of workflow
,
HTTP callback used by Oozie to update the

client with the workflow status

• callback may also be triggered during entry to or exit from

an action node

begin
map- prepuce

Success NotifyClient END
>
of success

START > PROGRAM
(Email action

> (successful

CAction Node) Node, Completion)

Error

✓

Notify client
of error

control
(Email action
node)

Node

v

KILL
Unsuccessful
termination

workflow

1. A workflow app consists of Wf definition and all associated

resources CMR jar files , pig scripts etc.) specified in a workflow - Xml

file placed in HDFS

2. The oozie environment in terms of which server to use is specified

3. The wf is run

4 . The config files contains definitions of parameters in the workflow

XML file



$ hadoop fs -cat <location_of_result>

5- Results of successful Wf execution can be viewed as

Ambari

° Open source web-based management framework / tool for Hadoop
clusters

• Functions supported

1. Cluster provisioning
- simplified deployment across platforms
- wizard - driven cluster install
- Cloud

,
virtual and physical environment

2. Managing cluster

- consistent controls across the stack

- Single point for cluster operations (start , pop etc.)
- Advanced configurations and host controls

3. Monitor

-

Visibility into key cluster metrics
- Dashboard for cluster health and status

-

Pre-configured and customisable metrics
,
notifications and alerts

•

supports easy, efficient , repeatable creation of clusters

• Supports the following Hadoop components in 3 layers
- Core Hadoop : HDFS , MR
- Essential Hadoop : Pig, Hive , Hcatalog , HBase, Zookeeper
-

Hadoop support : Oozie , Sqoop , Ganglia , Nagios



Components of Ambari

1. Ambari web
° Runs on client side

• calls Ambari REST API to access cluster information and

perform cluster operations

2. Ambari Server

• master process which communicates with Ambani agents
• Has DB used to maintain cluster - related metadata

• Provides communication with agents

3. Ambari Agent
• Installed on each node

•

Periodically sends health status Ct different metrics) to

master ?

• Actions driven by the master

Architecture

(a) Ambari Stacks

• coordinated and tested set of Hadoop ecosystem components
to be installed

•

Eg: Hadoop , its components and its structure

(b) Ambari Blueprints
• Cluster definition files ( 2 JSON files)

,
one generic template

and one that sets specific properties to launch the

deployment process
• could include : stack name, stack version , security etc.

(C) Ambani views

• UI



Ambari

Blueprints

Ambari API

Ambari
, >

Ambari
< > Ambari

Web Server
Agent

js java python
stacks

Ambari Ambari
views stacks

stack
Definition

+
"MP""+ = Blueprint
Layout

Instantiate
Blueprint > Cluster

Disadvantages of MR

• Too low - level for data analytics (series of map and reduce stages)

• writing code requires training

• Abstraction will be helpful ( inputs in high- level scripting language
converted to MR) using Apache Pig and Pig Latin

• SQL- like abstraction also good HIVE



PIG

• Abstraction over MR

• Supports all kinds of data (structured
,
unstructured) and stores in

HDFS

Architecture of PIG

1. PigLatin
• SQL- like high - level language
• Supports complex transformations
•

Operations : join , group , filter , limit etc .
• Supports automatic optimisation
° Supports running of functions written in other languages
leg: Java)

2. Pig server
• Runtime env for PigLatin

3. Grunt

• Pig shell

°

PigLatin scripts are converted to MR Jobs internally
• Created at Yahoo

PIG Latin script MR Process

n
'

v v3 v8 MR Job

Grunt PIG Execution

Shell Server Engine

2 v4
% MR Code

v v
5 6

Parser > Optimizer > compiler



Example Data Analytics Tales



visits = load /ipldata/visits as (user,matchid, time);
gMatches = group visits by matchId;
matchPopularity = foreach gMatches generate matchId, count(visits);

matchInfo = load /ipldata/matchInfo as (url, venue, winner);
venueCounts = join gMatches by matchId, matchInfo by matchId;

gVenues = group venueCounts by venue;
topMatches = foreach gVenues generate top(matchPopularity,10);

store topMatches into /data/topMatches;

In PIG Latin



https://blogs.apache.org/sqoop/entry/apache_sqoop_overview

SQOOP

- SQL - to - Hadoop (Apache)

• Supports bulk import and export of data into and out of

HDFS

• From structured DBS like RDBMS
,
NOSQL etc Cdefines schema

for import)

• Data migration tool based on connector architecture

• Advantage of migrating to HDFS : streaming data access

• Supports plugins for data sources

or

RDBMS

(MySQL, Oracle,
PostgreSQL>DBZ)

n

SQOOP
V

Import Export

7

j

HDFS
, HIVE ,

HBASE



$ sqoop import --connect jdbc:mysql://localhost/acmedb \
  --table ORDERS --username test --password ****

https://blogs.apache.org/sqoop/entry/apache_sqoop_overview

IMPORT : SQL to HDFS

• connect argument is used to connect to the database

• table argument specifies table name

STEP 1

•

Inspect DB to gather required metadata on data being
imported

STEP 2

• Transfers data

- Map- only Hadoop job Sqoop submits to cluster

- Imported data stored in HDFS directory
- CSV by default



$ sqoop export --connect jdbc:mysql://localhost/acmedb \
  --table ORDERS --username test --password **** \
  --export-dir /user/<name>/ORDERS

https://blogs.apache.org/sqoop/entry/apache_sqoop_overview

EXPORT : HDFS to SQL

• connect argument is used to connect to the database

• table argument specifies table name to be populated
• export-dir argument is dir from which data is exported

STEP 1

•

Inspect DB to gather required metadata on data being
exported

STEP 2

• Each map task performs this transfer over many transaction
- Minimal resource

,
Max throughput



FLUME

° BD from various data sources Capp servers , social net sites , cloud

servers
, enterprise servers) using Hadoop will be producing log

files and events

• cannot put into HDFS file -by - file

•

Apache Flame : ingestion mechanism for effectively collecting,
aggregating and moving large amounts of data

• Streaming data flows for collecting large amounts of streaming
data to a centralized store
- from events

- from logs

Architecture

1- Agents

• receive Flume events from data generators and store in centralized

store CHDFS
,
HBase)

• individual daemon process CJVM)

2. Source

• part of an agent

• receive Flume events from data generators and transfers it to

one or more channels in the form of Flume events



3. Flume event

• basic unit of data transfer inside Flume

• contains a payload of byte array to be transported from

source to dest with the structure

Header Byte Payload

4. Sink

• receives data and stores into centralized stores CHDFS
,
HBase)

• consumes data from channels and delivers to the

destination

flume
event

d

data

generator
5. Channels

• connect sources to sink

• transient store that receives events from source and buffers

them till they are consumed by sinks

• bridge between source 4 sink

• JDBC channel
,
File system channel



MAP- REDUCE ALGORITHMS - MATRIX MULTIPLICATION

Vectors

• Ordered list of numbers

• Size 4 direction
°

Operations : addition , scalar multiplication

z

=
1043 +

7

6

Matrices

•

Rectangular array of elements
• nxm : n rows and m columns

• Vectors maybe considered as row Clxn) or column Cnxl)

matrices

• Represented in memory as row - major or column - major form

as multi-dimensional array
- Row major : CIC-1-1 , Python , Java etc .

- column major : Fortran
• Represented on disk

matrix multiplication

{
All 912 ' ' - Aim bit - - . bip

:/ =/
" "

y921 922 ' ' - 92M ] ✗ ( b21 - - -

b2P [ 21 - . . czp

: : : : : : : : :

Ahl Anz - - - Anm
nxm

bm, - - - bmp Chi - - .

Cnp nxp
mxp

m

cij = Gain -

bkj
b- I



Matrix Representation of www

• Model www as a directed graph

Page / Page 2

Links to
links to

I
2

3
3

4

Pages Page 4

Links to Links to

4 1

I 2

• Directed graph

7

1
a

2

n
r

n

✓

c
U

3 2 4

• As adjacency matrix

source

I 1 I

0 O lbest µ , o 0 ]
1 I 0



Representing as Sparse Matrix

row
,
cot
,
Val dish

} 31,2 , I 31,5, I 2 I > 8,2 §
Po→ p , pz ←

} parallelPz→ po ←
web

.

crawlers

:

Po → ps ← will not be stored

sequentially on file

• Store non-zero values in Csv file on HDFS

Crow number
,
column number

,
value >

• As many entries as links

1
,
2
,
I

source 1,3, I

best 2 ,

" & > " 1,4 ,
I

1/0
I 1 I 2,1 , I
0 0 I 2,4 ,

I

3 I 1 0 0 ) 3
,
I
,
I

4 O l l 0 3,2 , I

4,2 , I

4,3 , I

Q : Exercise : try saving it in a file and loading it onto

HDFS



matrix- Vector multiplication with MR

•

Amxn ✗ Un

n

Ni
= E a

,

j= ,
j
✗ Vj

• A is sparse
° A is a large matrix stored as an HDFS file

case 1 : Assumptions

• Assume vector ✓ can fit in memory
• Assume vector v shared by all machines
• Assume Mij is stored as a CSV file on HDFS and is distributed

across multiple nodes

map

• computes partial product
• Use key as i → index in target vector
• Output ( i , Mijvj)

Reducer

• Sum all partial products



Example

Map :
Mapper 1 Mapper 2

Reduce :



Q : Assume ROWI
, Row 3 in DNI and R2

,
R4 in DN2

Show input/output of MGR

Node 1 :

( I
> 3,3) → 4,9)
(1,4 >

8) → (1,32)
(3,2>10)→ ( 3,207

Node 2 :

(2)2,97 → (2,187
(2)3,5) → (2,15)
(4,1 , 5) →

(4,57

(4)4,1) → (4
,
4)

Reducer :

(1,35)

( 2,33)

(3,207
(4,97



Case 2 : V does not fit in memory

• Partition M into stripes

RI

• Multiple stages of MR

Search Engine Working

Search for a term
, lookup an inverted ,

sort pages based

Eg :
"

Big Data
"

index : maps every term on importance
to documents that

contain the term



Inverted Index Forward Index

Maps words or texts to documents Maps documents to words

Indexing is slower since a check needs to 
validate if the word exists

Indexing is faster since the addition of texts/
words can be append only

Searching or information retrieval is faster Searching or information retrieval is slower

Inverted Index

Source : Medium

Inverted Index vs Forward Index

PAGERANK

• Cannot use term frequency

• Cannot simply use no . of incoming links

• Technique : start from a random page and
start traversing ;

probability of reaching a page from a random page using
links (random surfer)



Converting Adjacency Matrix to Transition matrix

source

>

2

• •
• •

'
e

•

{
O l l l

n
r

^

best • I 0 O l

l 0 0 ]• I
✓

c
u

• O l l 0

3 2 4

° If random surfer starts at 4 and follows links out

- can go to 1 or 2

• Assume equal probability of transition to either node

- PC transition at node 4) = Ycno -
of outlines)

• PCtransition at 4) = 1/2

• column vector of probabilities of directly transitioning to

every other page

1%1 . 1¥:/
2'

e

n
r

n

v u

C 1/2

3 2 4 ( 42E. I :/



Transition Matrix Source

• @ @

• 0 1/3 1/2 42

m= best • |°yz 0 0 42)• 1/2 43 0 0

• 0 1/3 42 0

Random surfer - Initialisatin

• Random surfer randomly chooses a starting node (each

node has equal probability of being a starting node)

• Vector v called the importance vector ; represents relative

importance of each node

• Vector v initialised to v0 [for the graph above)

1/4
Vo -- (1/4)1/4

44

• For each node
, compute probability of ending up on that

node based on previous node

• Multiply M and V Cv tells importance of node and M

tells probability of transition)

•
• @ @

•

{
0 1/3 42 1/2 43'"

f-- µ "44•

yz 0 O
' ✗ (ya• 1/2 43 0 0 5/24}

• 0 1/3 42 0 1/4 5124

M Vo V1



•

Repeat again

•
• @

1/3 42 1/2 43•

/
°

/ =/
""

•

yz o o ! ✗ ( 44 13148
• 1/2 43 0 0 5/24 114
• 0 1/3 42 0 5/24 3/16

]
M V1 V2

• Stop when Mv - v or MV=V

• v is the eigenvector of M

PageRank - MR Implementation

• Mapper stage outputs lie,v) pairs where key is name of

the page C index in vector v7 and value is the transition

probability ✗ the initial value in v

• Performed with a damping factor p

Vi = PM vi. , -1 ( 1-f) e

• Combiner can be used to reduce network traffic

Q: Compute Page Rank

Adj matrix
2
r

/ r I 23 4 5

I C

,

3 I 0 0 I 0 I

n n 2 I 0 1 I 0

be 3 I 0 0 I 0

5 > 4 4 O O O O I

5 o l l 0 0



Transition Matrix

I 23 4 5 V0
I 0 0 1/3 0 1/2 45
2 1/20 1/3 42 0 1/5
3 1/20 0 420 1/5
4 O O O O 1/2 45
5 0 I 1/30 0 1/5

Mapper output Reducer output

(1,1/15) (1,1/6)
( 1
,
410) (2,4/15)

(2,1/10) (3,1/5)
C2
,
1/15) (4,1/10)

(2,1/10) (5,4/15)

(3,1/10)
(3

, 4107

(4,1/10)
(5,1/5)
(5,1/15)

Where is the comparison Done?

0

Vi and vi. , cannot be compared in the mapper or the
reducer

• Where the code is written

do {
Viti = MRCV;)

} while Cvi+, ! = Vi)



RELATIONAL OPERATIONS

Relations
• Tables

• Set of rows/ tuples
• Columns are attributes

Relational Operators
• Selection : ECR) C : condition

• Projection: Tls (R) s : subset of attributes

• Union : U

• Intersection : A

• Difference : -

• Join :X

•

Group
°

Aggregation

Q : Table PLAYERS

1. Write SQL queries to list

(a) All details for coaches

(b) Only the names of the coaches

(c) Total no . Of coaches

2. What type of relational operation is being used?

I . (A) SELECT * FROM PLAYERS WHERE Role =
'
coach

'

;

(b) SELECT NAME FROM PLAYERS WHERE Role =
'
coach

'

;
(c) SELECT COUNT (A) FROM PLAYERS WHERE Role = 'Coach

'

;



2. car selection

(b) Projection 4 selection

(c) Aggregation

BIG DATA PERSPECTIVE

• In memory

4 256 16 8 - total = 284 bytes

} array ofstructures

ID Name Role Team

• Offsets :

- ID :O

- name : 4

- Role : 260

- Team : 276

• If stored in structured DB on disk
,
can convert array of bytes

to array of structures easily

• Assume data in Csv on HDFS

• Records stored sequentially

• Cannot read in the same way



SELECT IN MAP- REDUCE

Query : SELECT * FROM PLAYERS WHERE Role =
'
coach

'

;

map
• Read each row t of table

• Check if it satisfies condition C

• If so
, output Lt ,t)

I can also be CPK,t) or Lt
,
null)

Reducer or (null
,
t) etc.

• Identity

PROJECT IN MAP- REDUCE

Query : SELECT NAME FROM PLAYERS WHERE Role -_
'
coach

'

;

map
• Read each row t of table

• calculate subset of attributes t
'

•

Output Lt
'

,t
'

)



Reduce
- Eliminate duplicates (multiple rows with same field)

Ct
'

, [t
'
,t
'

,
t']) → (t

'

,t
'

)

UNION IN MAP -REDUCE

• Rus : R and S have the same schema

• 2 input files → 1 output file

• 2 mappers for 2 input files

Input Input
Filet File 2

Mapper / Mapper 2

Reducer

Output
Mapper I

° Read each row t of table R

• Output Ct ,t)

mapper 2
• Read each row t of table S

• Output Lt , t)

Reducer

• Eliminate duplicates
• Ct

,
[t.TT) → Ct

,
t)



Q :

mapper 1 Mapper 2 Reducer

A → (A)A) A → ( A A) (A)CA.AT) → A

B → CB
,
B) E → (ETE ) (B) B) → B

C
→ (C

, c) f- → (F
,
F) (C

,
[C)d) → C

D → (D) D) c → cc
,
C) (D

,
D) → D

(E)E) → E

(F) F) → F

INTERSECTION IN MAP - REDUCE

• Rns : R and S have same schema

Input Input
Filet File 2

Mapper / Mapper 2

Reducer

Output



Mapper I
° Read each row t of table R

• Output Ct ,t)

mapper 2
• Read each row t of table S

• Output Lt , t)

Reducer

•

Output only duplicates
• Ct

,
[t.TT) → Ct ,t)

DIFFERENCE IN MAP- REDUCE

• R - S

Input Input
Filet File 2

Mapper / Mapper 2

Reducer

Output

Mapper I
° Read each row t of table R

• Output Ct ,R7

Mapper 2
• Read each row t of table S

• Output (tss)



Reducer

•

Output only those in R
• Ct

,
[RT) → Ct ,t)

Q : Perform set difference using MR .

Show YP and OIP at

map 9 reduce ends

IPL 2010 IPL 2021

RCB DC

KKR RCB

KXIP CSK

RR RR

DD

minm
, Mz

RCB → (RCB
,
2010 ) DC → CDC

,
2021 )

KKR → CKKR
,
2010 ) RCB → CRCB

,
2021 )

KXIP -7 (KXIP
,
2010 ) CSK → (CSK

, 20217

RR → (RR
,
2010 ) RR → ( RR

,
2021 )

DD → (DD
,
20107

Reducer

CCSK
,
2021 ) →

CDC
,
2021 ) →

(DD
,
2010 )
→ DD

( KKR
, 20107 → KKR

( KXIP
,
2010 ) → KXIP

(RCB
,
[ 2010,2021]) →

CRR
,
[ 2010,2021]) →



NATURAL JOIN IN MAP - REDUCE

• Join R and S on attribute B

•

A. C are the other attributes in Rss

RCA, B) SCB>C)

Input Input
Filet File 2

Read Cais)
Read Cb

>
c)

v v

mapper / Mapper 2

(b)CR,a))
, ,

(b) (SC))

Reducer

(a)b)c)
✓

Output

Mapperl
° Read (a)b) of R

, output (b, CR >a))

mapper 2
• Read (b)c) of S, output Cb

,
CS,c))

Reducer
° For each pair (b, CR>an and Cb

>
CS

> CD
, output (a)b.c)



Given the following input for two files

Table Employee E(Name, age) 

Gabbar 35
Viru 37
Jai 33 
Baldev 44 
Basanti 31

Table Dept D(Name, Dept) 

Gabbar Bandit
Viru Hero
Jai Hero
Baldev Police 
Basanti Heroine

Show (for the Natural Join algorithm)

1. Input and output of mapper 1 
2. Input and output of mapper 2 
3. Input and output of reducer

D:

MI M2

(Gabbar
,
(E)357 (Gabbar

,
CD
,
Bandit))

(Viru
, (E)37) ( Viru

,
CD
,
Hero))

(Jai
,
CE
,
337) (Jai

,
CD
>
Hero))

(Baldev
,
(E)447 (Baldev CD

,
Police))

(Basanti
, (E)31)

( Basanti
,
CD
,
Heroine))

R

(Baldev
,
[(E)447 > (D)Police)))→ ( Baldev

, 44 ,
Police)

(Basanti
,
CCE ,3D , CD , Heroine)))→ (Basanti

, 31 >Heroine)

(Gabbar
,
[ (E)357

,
CD
,
Bandit))) → ( Gabbar

,
35
,
Bandit)

(Jai
,
CCE

,
337
, (D)Hero

))) → ( Jai
,
33
,
Hero)

(Viru , [ (E)377, CD , Hero)]) → ( Viru
>
37
,
Hero)



GROUPING AND AGGREGATION

° For relation RCA ,B,c) group by A and aggregate by function
f- (B)

RCA, B >C)

Input
Filet

(a)b)c)

v

mapper I

(a)b)→ (a) Cbi >bz.bz . . .])

✓

Reducer

(a) f-Cbi>bz.bz))

output

mapper
• For each line (a)b.c) output (a. b)

Reducer

•

Aggregate Ca
, Cbi > bz , bz, . . . ,bn]) into (a) fcbnbz.bz, . . . >bn))



Given the following input file

Table Dept D(Name, Dept) 

Gabbar Bandit
Viru Hero
Jai Hero
Baldev Police 
Basanti Heroine

Determine number of employees in each department. 
1. Show mapper output
2. Show reducer input/output

Oi.

Mapper Reducer

(Bandit
,
Gabbar) (Bandit

,
Gabbar)→ (Bandit

,
17

(Hero
,
Viru) (Hero

, [Viru , Jai])
→ ( Hero

, 2)

(Hero
, Jai) (Heroine

,
Basanti>→ (Heroine

,
1)

(Police
>
Baldev) (Police

>
Baldev)→ (Police

,
1)

CHeroine
,
Basanti>

HIVE

• SQL-7 HDFS

• Converted to MR jobs

• SQL- like queries : HQL

• Storage : txt , Refile , HBase



https://ieeexplore.ieee.org/document/5447738

• cannot handle real-time data

• Cannot handle OLTP transactions should be atomically
executed

• Hive queries contain latency

Architecture

. Meta store : stores schema maps columns to Csv

•
-

paper



HIVE components

A

serialise
,
deserialise

MR client

- On HDFS : can be stored in CSU
,
XML

, JSON , Binary

• SerDe : Serialization / Deserialization
- drivers for each format
- for storing / accessing files in HDFS



Hive Data Model

• stored as HDFS files

• categorized into three granular levels

Table

• Table mapped to HDFS directory
• Like table in RDBMS

•

Operations : filter , project, join , union
• Tables divided into multiple files and directories

Partition

• HDFS subdirectory
• Tables organised into partitions based on column / key



FROM (SELECT a.status, b.school, b.gender
      FROM status_updates a JOIN profiles b
           ON (a.userid = b.userid and
               a.ds=’2009-03-20’ )
      ) subq1
INSERT OVERWRITE TABLE gender_summary
                       PARTITION(ds=’2009-03-20’)
SELECT subq1.gender, COUNT(1) GROUP BY subq1.gender
INSERT OVERWRITE TABLE school_summary
                       PARTITION(ds=’2009-03-20’)
SELECT subq1.school, COUNT(1) GROUP BY subq1.school

http://www.vldb.org/pvldb/vol2/vldb09-938.pdf

Bucket
• Subdivision of partition
• Divided based on hash function of specified column

• Enhance query efficiencies

•

HIVE compilation Example



https://ieeexplore.ieee.org/document/5447738

a b

status Cactive
, away

> gender
school

source :



https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

COLUMNAR DATABASES - MOTIVATION

• HDFS - good for batch processing

• HDFS - Not good for
- record lookup
- incremental addition of small batches

- updates

• HIVE not good for
- record lookup
- incremental addition of small batches

- updates
- unstructured / semi- structured data

• Hbase and Cassandra

° Built on Bigtable model

• Good for
- fast record lookup
- record level insertion

-

updates (Hbase - creates new versions)

- unstructured / semi- structured data



Which of these could be stored in HDFS, Hive or Hbase?

1. Parsed transaction logs of user activity in a website where 
relevant fields from the log have been extracted

2. Unparsed transaction logs of user activity

3. Database of users and friends at a social website, which is 
periodically analyzed for social networking analysis

summary

Q:

1. Hive - structured (relevant fields)

}
no updates
required

2. HDFS - unstructured canparsed)

3. Hbase - constant updates



Which method does less I/O for

1. Analyzing the relationship between age and earnings

2. Adding a new row or read a row

Columnar storage

• Row storage : DB single file , one row per line (transactions)

• column storage : each column stored as separate file , one
value

per line (analytics>

• Each load requires yo to be performed

Q:

column

row

structured vs Unstructured Data

• How to handle unstructured data in RDB ?



° How to handle unstructured data in unstructured DB?

Hbase

° Distributed column oriented DB on top of HDFS

• Data logically : rows/ columns of a table

Cassandra

• Distributed DB - P2P (Facebook)

• Inspired by DynamoDB

Hbase / Cassandra

• Both use same data model inspired by Bigtable

DATA MODEL : TERMINOLOGIES G CONCEPTS



Column families

° Hbase schema : several tables

• Each table : set of column families
• columns not part of schema
• Hbase : dynamic columns

° Column names encoded inside cells

HBase Data Model

• semi - structured

• Data partitioned into simpler components and spread across

cluster



master-Slave Architecture

• Note : ppt links to mapr do not work as HPE has taken over

1 . MasterServer
-

Assigns region to region server

- Detects failure using Zookeeper
- monitors Regionservers and load balances regions
• Supports admin functions schema changes , creation of tables ,
column families

. Similar to NameNode of HDFS

2- Region servers
• contain regions
. communicates with client and manages data - related operations
- Serves data for read/write for regions under it casing log)
• Decides on region size

• Similar to DataNodes of HDFS

3. Regions
• Split parts of tables spread across region server

• Subset of a table's rows

• Automatically done



https://www.oreilly.com/library/view/hbase-the-definitive/9781449314682/ch01.html 

Region servers

meta
table :

keeps
track of

regions

. start with single region 4 modify dynamically

Read/Write Operations



write- Ahead Log

• Before writing to DB
• can restart from WAL if problem occurs

• Blockcache and Memstore in RAM

• HFiles and WAL in HDFS

Components of Hbase
R3



Cassandra

•

Originates from Bigtable and Amazon's Dynamo DB

• Open source columnar NOSQL DB
,
similar to Hbase

. P2P (not master-slave)

e supports elastic scalability (allows no . of nodes in cluster to

increase)

° Prevents failure with replication

• can dynamically accomodate changes

• Uses consistent hashing- which machine contains what



• Data organised into partitions

• Partition : hey , column names

Hbase Usage

1- Create table table name

1

T
column

family name

2. Insert values

T P T

row key column value
name

3. Retrieve values

✗
specific row

T
all rows



QUESTIONS

Q: combiners in MR execute on

(a) Map node (b) Reduce

(b) Network (d) Node manager

Q: Secondary NNS

(a) are used as backup for Active NN
(b) are used by 2k to help switch on a fault
(c) used to create f-Stree and relieve ANN of this task

(d) used to load balance requests to NN

Q : SRN NAME ADDRESS AADHAAR

students . Csv on HDFS

AADHAAR VACCINATION STATUS

vaccstatns . Csv on HDFS

Find no . of students vaccinated

(a) Write MR pseudocode
(b) keys at OIP of mapper ?



ANSWERS

Q: combiners in MR execute on

(a) Map node (b) Reduce

(b) Network (d) Node manager

Q: Secondary NNS

(a) are used as backup for Active NN
(b) are used by 2k to help switch on a fault
(c) used to create f-Stree and relieve ANN of this task

(d) used to load balance requests to NN

Q : SRN NAME ADDRESS AADHAAR
students . Csv on HDFS

AADHAAR VACCINATION STATUS

vaccstatns . Csv on HDFS

(a) Mapper I
° Read (AADHAAR

,
SRN) of students

,
0 / P CAADHAAR

,
(Stu

, SRND

Mapper 2
• Read (AADHAAR

,
SRN) of vaccine

,
0 / P CAADHAAR

,
status)

only if True

Reducer
° For each pair , increment count


